
Recovery of the Trajectory of DNA inside Viral Capsids

from Liquid Crystal Vector Fields

Zhijie Wang

December 2020

Contents

1 Introduction 1

2 Background 4

2.1 Knot Theory . 4

2.1.1 Alexander Polynomial . 8

2.2 Optimization . 9

2.2.1 Unconstrained Optimization . 10

2.2.2 Constrained Optimization . 11

2.3 Monte Carlo . 16

3 Data and Methods 18

3.1 Vector Field Produced by PDEs . 18

3.2 Use KKT to Find Microvectors . 20

3.3 Randomly Select Subset of Microvectors . 22

3.4 Generate Closed Curves . 25

3.5 Compute Knot Type . 30

4 Results 31

4.1 Microvectors can be generated around the macrovector with small error . . . 31

4.2 Uniform sampling of the vector field is obtained 37

ii

CONTENTS

4.3 Different Trajectories Are Obtained From Different Connecting Protocols And

Parameters . 41

4.4 The Trajectories Are Unknotted . 51

5 Conclusions and Future Work 53

5.1 Limitation of the work . 53

5.2 Future work . 54

6 Acknowledgements 56

Appendices 57

A Data Files 58

B Algorithms 61

B.1 CP3 . 61

B.2 CP2 . 64

iii

List of Figures

2.1 Common Knots and Links . 5

2.2 +1 and -1 crossings . 6

2.3 Three types of Reidemeister moves . 6

2.4 A 51 knot . 7

2.5 Dowker code for 51 knot . 7

2.6 Notation of crossings used in Alexander polynomial 8

2.7 Crossings and regions notation for a 31 knot 9

2.8 Estimation of π using Monte Carlo method 17

3.1 Triangulation of the volume (capsid) . 19

3.2 The complete vector field . 19

3.3 Liquid crystal director and microvectors . 20

3.4 Uniform distribution of ϕ and θ . 23

3.5 Cartesian space views of ”uniformly” distributed points 24

3.6 CP1 connects the first 20 vectors . 26

3.7 CP2 connects the first 20 vectors from a 20,000 vectors sample 27

3.8 CP3 connects the first 20 vectors from a 20,000 vectors sample 28

4.1 . 33

4.1 25,50,75,100 microvectors around the macrovectors 34

4.2 Visualization of microvectors with different maximal angle 35

iv

LIST OF FIGURES

4.3 Vertical view of Figure 4.2(b) and (c). 36

4.4 Visualizations of the original vector field . 37

4.5 Different sample sizes visualization . 38

4.5 Different sample sizes visualization (cont.) 39

4.5 Different sample sizes visualization (cont.) 40

4.6 Connecting first 80 and 200 vectors with CP1 42

4.7 Connecting 5,000 vectors with CP2 . 43

4.8 Connecting first 200 vectors in CP2 . 44

4.9 Connecting first 200 vectors in CP3 . 45

4.10 Trajectories from different protocols and parameters 50

4.11 Different views of trajectory of connecting 150 vectors 51

4.12 Different views of trajectory of connecting 500 vectors 51

A.1 Screenshot of data TET . 59

A.2 Screenshot of data VTX . 59

A.3 Screenshot of data N . 60

A.4 Screenshot of data S . 60

v

List of Tables

2.1 Table of equations for Alexander polynomial 9

4.1 Different sizes of microvectors and the properties of solutions to the mini-

mization problem . 32

4.2 Different maximal angles between the macrovector and the microvectors and

the properties of solutions to the minimization problem 32

4.3 Different initialized ranges of x0 in the minimization problem for generating

microvectors. 35

4.4 Vector usage information with different sample sizes and protocols (Jumping

Layer Allowed) . 46

4.5 Vector usage information with different sample sizes and protocols (Jumping

Layer NOT Allowed) . 47

4.6 Average number of crossings in projections for different trajectories 52

Chapter 1

Introduction

Bacteriophages or phages are the most abundant entities on Earth. They are viruses that

invade bacterial cells, disrupt metabolism, and cause them to lyse. Phages are composed of

proteins that encapsulate a DNA or RNA genome. The capsid is attached to a tail which

has fibers, used for attachments to receptors on the bacterial cell surface [6, 15]. Bacte-

riophages are of great interest for their potential as attractive therapeutic agents against

rapidly emerging, antibiotic-resistant bacteria [6]. The applications of phages also range

from the diagnosis of diseases, their prevention, and their treatment. Because of their use

in the field of biotechnology and medical science, bacteriophages need to be studied [15].

The double-stranded DNA molecule inside the viral capsid is found under extreme con-

centration and osmotic pressure. This high armatic pressure facilitates this phage genome

to enter the host cell. This is a unique feature of bacteriophages since for other viruses, their

entire virus structures enter the cell cytoplasm [17]. Because this key step in the expan-

sion process of bacteriophages, the DNA within the bacteriophage capsid must be optimally

packed for ejection, with a pressure strong enough to inject the genome into the host cell.

Because of the bending energy due to the bending rigidity of the DNA strands compared

with the diameter of the capsid, the arrangement of the DNA inside the capsid is ordered in

concentric layers near the capsid wall, at the center of the capsid there is a disordered core

1

CHAPTER 1. INTRODUCTION

that is believed to relieve the high pressure.

At the time of ejecting the DNA molecule, a mechanism suggests a phase transition,

possibly into a ’liquid-like’ state [8, 14]. Both packing and releasing of the genome are

highly dependent on how the DNA folds inside the capsid; however, our understanding of this

folding remains limited. There are a few theoretical models attempting to describe the DNA

molecules in a liquid crystalline phase [2, 11]. In this thesis, the starting model is an energy

minimizing configuration built from cryo-electron microscopy (cryo-EM) data. The model

of DNA folding is built with cryo-electron microscopy data, the hexagonal chromonic liquid

crystal structure of the packed DNA [10], and the continuum theory of liquid crystals[18].

It also assumes that the hydrated DNA fills the entire volume of the capsid[7].

In this work, we developed three different protocols to recover the trajectory of DNA

from liquid crystal vector fields. To facilitate computation, an effective method of sampling

vectors from the vector fields is proposed. Also, an optimization method for generating sets

of molecules around the directors in liquid crystal vector fields. And finally, we generate the

filaments from the sampled vector fields.

This thesis is organized as follows. In Chapter 2, we provide some background on knots

and knot invariants. We also present how to compute the dowker code and alexander poly-

nomial of a knot. The basics of optimization are given. We first define the unconstrained

and constrained optimization problems, and give the general solutions. Then we introduced

an advanced algorithm for solving nonlinear optimization problems with nonlinear equality

and inequality constraints. In this work, we will obtain numerical solutions to minimization

problem instead of general ones. A basic idea of Monte Carlo sampling method is discussed

at the end of background chapter.

The vector field which we are using throughout this work is described at the beginning of

Chapter 3. For every vector in the vector field, it is the liquid crystal director, which is the

mean of surrounding organic molecules. To obtain the liquid crystal molecules, we formu-

late the optimization problem of generating microvectors (molecules) around a macrovector

2

(director). Then, because of the large dimension of the dataset, we consider a way to sam-

ple uniformly from the vector field. Following this, we develop three different protocols for

generating filaments from the vectors sampled from the vector field. This connecting curve

recovers the trajectory of the DNA inside viral capsids. At the end of this chapter, we

compute the alexander polynomials of the generated trajectories.

In Chapter 4, we discuss the results of the optimization problem of generating microvec-

tors, with respect to different parameters, such as: numbers of microvectors, maximal angles

between microvectors and the macrovectors, and how initial values affect the performance

of this algorithm. We then present some figures of the sampling method. From this, we

connect the sampled vector fields using three available protocols. The advantages and lim-

itations of them are discussed as well. From the trajectories, we illustrate the results of

Alexander polynomials and findings of other knot properties. In Chapter 5, the thesis closes

with concluding remarks and possible directions for future work.

3

Chapter 2

Background

2.1 Knot Theory

Definition 2.1.1 ([9]). A link L of m components is a subset of R3, that consists of m

disjoint, piecewise linear, simple closed curves. A link of one component is a knot. See

Figure 2.1a and 2.1b.

Definition 2.1.2 ([9]). Links L1 and L2 in R3 are equivalent if there is an orientation-

preserving picewise linear homeomorphism h : R3 → R3 such that h(L1) = (L2).

Definition 2.1.3 ([5]). Equivalent knots are said to be of the same type, and each equiva-

lence class of knots is a knot type.

Definition 2.1.4 ([9]). A knot K is said to be the unknot if it bounds an embedded piecewise

linear disk in R3.

Definition 2.1.5 ([9]). A knot K is a prime knot if it is not the unknot, and if K ≡ K1+K2

implies that K1 or K2 is the unknot.

Definition 2.1.6 ([9]). The image of a link L in R2 together with ”over and under” infor-

mation at the crossings is called a link diagram of L

4

2.1. KNOT THEORY

(a) Trefoil knot 31, prime knot (b) Knot 01, also called unknot

(c) Link 521 (d) Link 821

Figure 2.1: Common Knots and Links

We call a picture of a knot a projection of the knot. Figure 2.1a is a projection of the

trefoil knot and figure 2.1b is a projection of the unknot.

A crossing in a diagram of an oriented link can be allocated a sign; the crossing is said

to be positive or negative, or to have sign +1 or −1. The standard convention is shown in

Figure 2.2.

Definition 2.1.7 ([9]). The Reidemeister moves are of three types, shown in Figure 2.3;

5

CHAPTER 2. BACKGROUND

Figure 2.2: +1 and -1 crossings

each replaces a simple configuration of arcs and crossings by another configuration.

I Twist and untwist in either direction.

II Move one loop completely over another.

III Move a string completely over or under a crossing.

Figure 2.3: Three types of Reidemeister moves

The Dowker notation is a simple way to describe a diagram of a knot. Suppose we want

to describe a 51 knot, like the one in Figure 2.4. We pick a starting point and an orientation

6

2.1. KNOT THEORY

as in Figure 2.5. When we reach the first + crossing, we label it +1. Leaving that crossing

along the understrand in the direction of the orientation, label the next crossing that you

come to with a 2. Continue labeling that crossing on the same strand of the knot, and label

the next crossing with a 3. Keep labeling the crossings with integer sequence until you go

through all the way around the knot once. When done, each crossing in the knot will have

two labels on it because every crossing is passed through twice. And each crossing will have

one even number and one odd number labeling it [1].

Figure 2.4: A 51 knot

Figure 2.5: Label each crossing of the knot with two numbers.

7

CHAPTER 2. BACKGROUND

2.1.1 Alexander Polynomial

The idea of knot polynomial is to find a way to tell knots apart. For each knot, we can

associate a polynomial with it. We compute the polynomial from a projection of the knot,

but different projections of the same knot would yield the same polynomial. Therefore, we

say the knot polynomial is an invariant of the knot [1].

The Alexander polynomial is the first polynomial discovered by J. Alexander in about

1928. It is good at distinguishing knots and links.

Below I will describe the procedure to obtain the Alexander polynomial of a knot.

Figure 2.6: Notation of crossings used in Alexander polynomial

1. Take an oriented diagram D for a knot K and number the crossing 1, ..., n, the regions

1, ..., n+ 2.

2. Create an n × (n + 2) matrix M with Mi,j = 0 if region j doesn’t touch crossing i,

otherwise see Figure 2.6.

• on the left before undercrossing: −t

• on the right before undercrossing: 1

• on the left after undercrossing: t

• on the right after undercrossing: −1

3. New matrix: M̃ = M with any two adjacent columns deleted.

4. ∆K(t) = det(M̃)

8

2.2. OPTIMIZATION

To understand the computation process more easily, we let K be the trefoil knot. Observe

from Table 2.1, we can delete the first two column and obtain matrix M̃ =

0 −1 t

−t 0 t

−1 −t t

.

Then we have ∆K(t) = det(M̃) = t3 − t2 + t which is the Alexander polynomial of knot

K.

r1 r2 r3 r4 r5
c1 1 -t 0 -1 t
c2 1 -1 -t 0 t
c3 1 0 -1 -t t

Table 2.1 Figure 2.7

2.2 Optimization

For the purpose of introducing optimization problem, I will use A First Course in Numerical

Methods [3].

There are several types of optimization problems. The prototype used here is the mini-

mization of a scalar function ϕ in n variables x = (x1, x2, ..., xn)
T . We write this as

min
x∈Rn

ϕ(x)

which require that x be in Rn or a subset of it that is characterized by one or more constraints.

9

CHAPTER 2. BACKGROUND

2.2.1 Unconstrained Optimization

Here ϕ : Rn → R. This means that x = (x1, x2, ..., xn)
T is a vector, but ϕ takes on scalar

values.

Note in the following, x∗ is the local minimizer, and ϕ(x∗) is the local minimum. The

minimum is the minimal value of a function, while the point attains the minimum is called

minimizer.

Theorem 2.2.1 (Unconstrained Minimization Conditions). Assume that ϕ(x) is smooth

enough, e.g., suppose it has all derivatives up to third order, which are continuous and

bounded. Then:

• A necessary condition for having a local minimum at a point x∗ is that x∗ be a critical

point, i.e.,

∇ϕ(x∗) = 0,

and that the symmetric Hessian matrix ∇2ϕ(x∗) be positive semidefinite.

• A sufficient condition for having a local minimum at a point x∗ be a critical point

and that ∇2ϕ(x∗) be a positive definite.

Generally speaking, the condition for a critical point yields a system of nonlinear equa-

tions

f(x) ≡ ∇ϕ(x) = 0

that we need to solve numerically.

Algorithm 2.2.2 (Newton’s Method for Unconstrained Minimization). Consider the prob-

lem of minimizing ϕ(x) over Rn, and let x0 be a given initial guess.

for k = 0,1,..., until convergence

solve ∇2ϕ(xk)pk = −∇ϕ(xk) for pk

set xk+1 = xk + pk

10

2.2. OPTIMIZATION

end

2.2.2 Constrained Optimization

Constrained optimization problem is still optimizing the same scalar function in n variables,

f(x) as in unconstrained optimization problems. The difference can be inferred by the name

that now there are equality and inequality constrains that any eligible x must satisfy. In

fact, such constrained optimization problems are of great interest in real life applications. It

is important in fields of space technology, robotics, movement sequences in sports, and the

control of chemical processes and power plants, to name just a few.

The general problem can be set up as

minimize f(x)

subject to gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0,j = 1, ..., p

(2.1)

with variable x ∈ Rn. We also assume its domain D =
⋂m

i=0 dom gi ∩
⋂p

i=1 dom hi is

nonempty, and denote the optimal value of problem 2.1 by p∗. This means that a point x ∈ D

is feasible if it satisfies the constrains gi(x) ≤ 0, i = 1, ...,m and hj(x) = 0, j = 1, ..., p. Also,

the problem is said to be feasible if there exists at least one feasible point, and infeasible

otherwise. The set of all feasible points is called the feasible set x. We say x∗ is the optimal

solutions or solves the optimization problem if x∗ is feasible and f(x∗) = p∗.

A convex optimization problem is one of the form

minimize f(x)

subject to gi(x) ≤ 0,i = 1, ...,m

aTi x = bi, j = 1, ..., p

(2.2)

where f and g1, ...gm are convex functions. The main differences between it and the general

11

CHAPTER 2. BACKGROUND

constrained optimization problem 2.1 is that

• the objective function must be convex,

• the inequality constraint functions must be convex,

• the equality constraint functions hj(x) = aTi x− bi must be affine.

A fundamental property of convex optimization problems is that any locally optimal

point is also (globally) optimal. This is the reason why convex functions are preferable when

setting up the problem.

The Lagrangian and Karush-Kuhn-Tucker Conditions

The basic idea in Lagrangian duality is to take the constrains into account by augmenting

the objective function with a weighted sum of the constraint functions [4]. We define the

Lagrangian L : Rn × Rm × Rp → R associated with the problem 2.1 as

L(x, λ, µ) = f(x) +
m∑
i=1

µigi(x) +

p∑
j=1

λjhj(x) (2.3)

where µi and λj are called the Lagrangian multipliers associated with the ith inequality

constraint gi(x) ≤ 0 and jth equality constraint hj(x) = 0 respectively. The vectors µ and

λ are the dual variables or Lagrange multiplier vectors associated with problem 2.1.

Then, we discuss the first-order necessary conditions for x∗ to be a local minimizer

in constrained optimization. We are referring to the Lagrangian function in 2.3 for our

discussion below.

The necessary conditions defined in the following are called first-order conditions, also

often known as Karush-Kuhn-Tucker conditions or KKT conditions for short [13].

1. Stationarity Condition

0 ∈ ∂ (f(x∗) +
m∑
i=1

µigi(x
∗) +

p∑
j=1

λjhj(x
∗)) (2.4)

12

2.2. OPTIMIZATION

2. Primal feasibility

gi(x
∗) ≤ 0, i = 1, ...,m

hj(x
∗) = 0, j = 1, ..., p

(2.5)

3. Dual feasibility

µi ≥ 0, i = 1, ...,m (2.6)

4. Complementary Slackness

µigi(x
∗) = 0, i = 1, ...,m (2.7)

The condition in Eq. 2.7 is implying that either constraint i is active or µi = 0, or possibly

both. Note that the Lagrange multipliers corresponding to inactive constraints are zero.

If the problem is convex, the KKT conditions are sufficient for the points to be optimal.

To see this, note that the second condition shows that x∗ is a feasible solution for problem

2.2. Since µi ≥ 0, L(x∗, λ, µ) is convex in x∗; the first condition states that its gradient with

respect to x vanishes at x∗, so it follows that x∗ minimizes L(x, λ, µ) over x.

When the problem is of small dimensions and is linear, solving the equations from KKT

conditions stated from 2.4 to 2.7 gives us analytical solutions. However, to solve a large-scale

system of non-linear equations, the Newton’s Method is powerful and a different interpreta-

tion of KKT conditions is needed.

Another way to approximately formulate the inequality constrained problem as a convex

equality constrained problem is the barrier method:

minimize f(x) +
∑m

i=0 I_(gi(x))

subject to hj(x) = 0, j = 1, ..., p
(2.8)

where I_ : R → R is the indicator function for nonpositive reals.

13

CHAPTER 2. BACKGROUND

Theorem 2.2.3 (Indicator function of a convex set [4]). Let C ⊆ Rn be a convex set, and

consider the convex function IC with domain C and IC(x) = 0 for all x ∈ C. Then we call

IC the indicator function of C. In other words, the function is identically zero on the set

C.

The idea in the barrier method is to approximate the indicator function I_ by the

function

I_(u) = −(1/t) log(−u), dom I_ = −R++, (2.9)

where t > 0 is a parameter that sets the accuracy of the approximation. The objective

function here is convex, because −(1/t) log(−u) is convex and increasing in u, and also

differentiable.

To solve this approximate problem, an algorithm is proposed in [16] and uses one of two

main types of steps at each iteration:

• A Newton step attempting to solve the KKT equations 2.4 and 2.7 for the approximate

problem via a linear approximation.

• A conjugate gradient (CG) step, using a trust region.

Here we will re-write the optimization problem in a more generalized form. The key idea

is the same as discussed above.

minimize fµ = f(x)− µ
∑
i

ln(si)

subject to g(x) + s = 0

h(x) = 0

(2.10)

The algorithm first attempts to take a Newton step. If it cannot, it attempts a CG step.

At each iteration the algorithm decreases with a merit function, such as

fµ(x, s) + v∥h(x), g(x) + s∥

14

2.2. OPTIMIZATION

to force the solution towards feasibility. A merit function is a modified cost function to cir-

cumvent poor convergence behavior in iteration regimes where constraints should be weak-

ened.

A brief overview of the Newton step and the CG step used in the algorithm will be given

below. Details will not be included in this thesis.

Newton Step

The Newton step is solving the equation 2.4 and 2.7 from KKT conditions making use of

an LDL factorization of the matrix. If the fatorization shows that the Hessian is not positive

definite, the algorithm uses a conjugate gradient step.

H 0 JT
h JT

g

0 SΛ 0 −S

Jh 0 I 0

Jg −S 0 I

∆x

∆s

−∆y

−∆λ

=

∇f − JT
h y − JT

g λ

Sλ− µe

h

g + s

(2.11)

with variables

• H denotes the Hessian (second derivatives matrix) of the Lagrangian of fµ in equation

2.10:

H = ∇2f(x) +
∑
i

µi∇2gi(x) +
∑
j

µj∇2hj(x). (2.12)

• Jg denotes the Jacobian (derivatives matrix) of the constraint function g.

• Jh denotes the Jacobian of the constraint function h.

• S = diag(s).

• λ denotes the Lagrange multiplier vector associated with constraints g.

• Λ = diag(λ).

• y denotes the Lagrange multiplier vector associated with h.

15

CHAPTER 2. BACKGROUND

• e denote the vector of ones the same size as g.

Conjugate Gradient Step

This method is to minimize a quadratic approximation to the approximate problem in

2.10 in a trust region, subject to linearized constraints.

Let R denotes the radius of the trust region, and other variables defined in the same way

in Newton step.

The algorithm first approximately solve the KKT equation 2.4. Then it takes a step

(∆x,∆s) to approximately solve another minimization problem:

minimize ∇fT∆x+ 1
2
∆xT∇2

xxL∆x+ µeTS−1∆s+ 1
2
∆sTS−1Λ∆s

subject to g(x) + Jg∆x+∆s = 0

h(x) + Jh∆x = 0

(2.13)

2.3 Monte Carlo

Monte Carlo (MC) methods are a subset of computational algorithms that use the process

of repeated random sampling to make numerical estimations of unknown parameters. They

are widely used in the fields of physics, game theory, and finance and lead to groundbreaking

discoveries. For example, we learn from primary school geometry classes that π is an irra-

tional number, meaning it has infinite digits without any pattern. Now, with Monte Carlo

methods, we are able to estimate π to as many digits as we like. By generating random

two-dimensional points within a box and counting the number of points which falls in an

embedded circle, we can estimate π to any degree of accuracy.

It can be seen from Figure 2.8 that the approximation approaches the exact value of π

as we increase the number of points used in the simulation process. And it is reasonably

expected that as the number of points → ∞, the estimation → 3.1415926...

During a Monte Carlo simulation, values are sampled at random from the input prob-

ability distributions. Each set of samples is called an iteration, and the resulting outcome

16

2.3. MONTE CARLO

(a) Estimate of π with 1,000 points: 3.092 (b) Estimate of π with 10,000 points: 3.1208

(c) Estimate of π with 100,000 points:
3.14724

(d) Estimate of π with 1 million points:
3.1416

Figure 2.8: Estimation of π using Monte Carlo method

from that sample is recorded. Monte Carlo simulations sample points hundreds or thousands

of times, and the result is a probability distribution of possible outcomes. In our example

before, the estimated values are just from one iteration. If we perform more simulations on

each number of points selected, we are likely to get more accurate values than the current

ones listed in the figure.

It is important here that the locations of our randomly generated points must be uni-

formly distributed throughout the area. If not, the approximation result will be poor. It

is implying that by using different probability distributions, variables can have different

probabilities of different outcomes occurring.

17

Chapter 3

Data and Methods

3.1 Vector Field Produced by PDEs

Input data were the solutions to the PDEs described in [19]. The volume (capsid) has been

decomposed into around 200,000 tetrahedra as shown in Figure 3.1. With Finite Element

method, the solutions to the PDEs are a vector field in which the origin of each vector is

placed at one of the vertices of a tetrahedron in which the domain (volume encapsulated by

the viral capsid) has been decomposed for integration. In Figure 3.1, each tetrahedron was

given by four three dimensional coordinates corresponding to the positions of its vertices. On

each vertex, there is a vector N relating to it. Figure 3.2 shows the vector field indicating the

value of the order parameter (degree of orientation) s by the color of the vector (small degree

is depicted in red and high degree in blue). Degree of orientation illustrates how well-ordered

the DNA strands are, e.g. s=0 indicates that the DNA strands are oriented in all direction

equally[19]. For full description and samples of data files, please refer to Appendix.

18

3.1. VECTOR FIELD PRODUCED BY PDES

Figure 3.1: Triangulation of the volume (capsid)

Figure 3.2: The complete vector field

19

CHAPTER 3. DATA AND METHODS

3.2 Use KKT to Find Microvectors

Figure 3.3: Liquid crystal director and microvectors

The background behind this problem is that in a nematic liquid crystal, rod-like organic

molecules are on average spontaneously oriented along the direction called the director n

as shown in Figure 3.3. Now we obtain the director, the macrovector, and we want to

reconstruct the organic molecules, microvectors, around n [12].

In this section, our problem is to generate a set of vectors ui for i = 1, ...,m such that

the mean of these so-called ”microvectors” is the macrovector n.

We can interpret this problem as given n, find ui such that

1

m

m∑
i=1

ui = n,

20

3.2. USE KKT TO FIND MICROVECTORS

and for each randomly generated microvector, the euclidean norm of it, ui, should be 1

∥ui∥ = 1

Also, we denote the angle between the macrovector and each microvector as θi, and it should

be less than π
2
. For this problem we can use

cos(θi) =
uin

∥ui∥∥n∥

To translate our problem to an optimization problem, first let ui = (xi, yi, zi) and n =

(a, b, c). Then our intuition leads the following formulation of problem:

minimize
∑m

i=1∥ui − n∥

subject to cos(θi) ≥ p, i = 1, ...,m

∥ui∥ = 1, i = 1, ...,m

(3.1)

Here p determines the maximal angles between the microvectors ui and the macrovector n.

We can first try to see how this algorithm looks like when generating two microvectors.

Now we re-formulate this optimization problem to be more computer readable:

minimize
√

(x1 − a)2 + (y1 − b)2 + (z1 − c)2 +
√
(x2 − a)2 + (y2 − b)2 + (z2 − c)2

subject to x1a+y1b+z1c√
x2
1+y21+z21

√
a2+b2+c2

≥ p

x2a+y2b+z2c√
x2
2+y22+z22

√
a2+b2+c2

≥ p

√
x2
1 + y21 + z21 = 1

√
x2
2 + y22 + z22 = 1

(3.2)

21

CHAPTER 3. DATA AND METHODS

However, the objectives in Functions 3.1 and 3.2 are not convex, neither those constraint

equalities and inequalities. And it is unrealistic to list all equations by hand if the goal is to

generate more than 100 microvectors. Therefore, we can modify the optimization problem

again and get the vector form of it.

minimize eTd

subject to p− (x·a+y·b+z·c)2
x2+y2+z2

≤ 0

x2 + y2 + z2 − e = 0

(3.3)

where d = (x − a)2 + (y − b)2 + (z − c)2 ∈ Rm×1, and x,y, z ∈ Rm×1 are vectors of x, y, z-

coordinates of microvectors u respectively. We are introducing e, a column vector whose

entries are all 1’s, because we want to sum the Euclidean distances between all microvectors

and macrovector and give the value in a linear form. And the reason why we eliminate

the term
√
a2 + b2 + c2 in the denominators of the fractions in inequality constraints is we

observed this value equals 1 for all macrovectors we want to study (∥n∥ = 1 for all n).

Now the system of equations are formulated appropriately for computation. To get the

solutions, solving the KKT conditions is sufficient because both objective and all constraint

functions are convex.

But, as mentioned in the background section, a variation of KKT conditions is needed

for our case because of the large dimensions of d,x,y, z. The method described in 2.10 is

used because it handles the nonlinear objective and constraint functions well.

3.3 Randomly Select Subset of Microvectors

Given that we have around 200,000 vectors in the vector field, the computation resources

required for connecting this number of vectors and computing the knot type of the con-

nected curve are too high. There is a crucial need for appropriate sampling. In this section,

the methods of sampling vectors are described so that the we are able to use the subsam-

22

3.3. RANDOMLY SELECT SUBSET OF MICROVECTORS

ple to connect the vectors and obtain different possibilities of dsDNA filaments inside the

bacteriophage capsid.

There are multiple methods to do the sampling from a large data set.

Because the shape of the vector field is spherical, it is undesirable to simply select spher-

ical coordinates, the longitude θ and the colatitude ϕ from a uniform distribution. In such a

distribution, θ ∈ [0, 2π) and ϕ ∈ [0, π], the mapping from spherical to Cartesian coordinates

does not preserve the area − the spherical space is pinched and compressed at the poles

by the mapping. It can be easily illustrated by creating and looking at the figures of such

a distribution would bring us. In Figure 3.4, 5,000 points are plotted to see the uniform

distribution of ϕ and θ. Then we map these points to a sphere from spherical coordinates

into the Cartesian space. The mapping functions are

x = r sinϕ cos θ

y = r sinϕ sin θ

z = r cosϕ.

Figure 3.4: Uniform distribution of ϕ and θ

Then we obtain a set of points in the Cartesian space. From the visualizations in Fig-

23

CHAPTER 3. DATA AND METHODS

ure 3.5, we see that the points are clearly not uniformly distributed but dense in north and

south poles.

Figure 3.5: Cartesian space views of ”uniformly” distributed points

In order to fix this, a different sampling method is needed.

The idea is that we first divide the volume into multiple spherical shells. In each shell, we

count the portion of vectors in the original vector field, and we use this portion to determine

the number of vectors in the newly sampled vector field. Then we randomly generate vectors

inside the shell and include the closest vector in the original vector field to it in our sample.

The details of the modified algorithm are as follows:

1. Convert all vectors to spherical coordinates, and obtain the radius of the spherical

vector field r. The radius is

r = max
∀v∈V

∥v − c∥,

where c is the center of the vector field, and V denotes the whole set of vectors in the

field.

2. Divide the spheres into p spherical shell. The i−th shell is the region of a ball between

two concentric spheres of radii ri = i·r
p

and ri−1.

3. For ith shell, i = 1, ..., p, count the number of vectors ni inside this shell. Let mi =
ni

n

24

3.4. GENERATE CLOSED CURVES

be the proportion of vectors for the ith shell, where n denotes the total number of

vectors in V .

4. Let k be the number to sample from V , where 0 ≤ k ≤ n. Inside the i th shell, there

will be ki = k ·mi vectors for the subsample.

5. Set ϕ = sin−1(γ) where γ is a random value drawn from the standard uniform dis-

tribution on the open interval (−1, 1). θ is also a random value drawn from uniform

distribution but on the open interval (0, 2π). r is randomly drawn from uniform dis-

tribution on open interval (ri−1, ri).

6. Notice the vector u = (θ, ϕ, r) only represents a random vector inside the sphere but

not necessarily an element of V . This step determines the vector s ∈ V with smallest

Euclidean distance with u. In other words, we want s such that

∥s− u∥ = min
v∈V

∥v − u∥.

Then we include this vector s in the subsample.

7. Repeat Step 5 and 6 until we obtain ki vectors for current shell i. Then we go to the

next shell i+ 1 for the same sampling process.

3.4 Generate Closed Curves

There are different approaches to generate an ensemble of curves from the set of vectors

describing the microstructure of the liquid crystal.

To facilitate calculations, cylindrical coordinates are used. Let vi,head be the position

of current vector’s head, vi+1,tail be the position of next vector’s tail, and xi,head be the x-

coordinate of current vector’s head. Similar notation will be used for y, z, θ. Here, we have

vi,head = (xi,head, yi,head, zi,head). V denote the whole vector field.

25

CHAPTER 3. DATA AND METHODS

Figure 3.6: CP1 connects the first 20 vectors

The simplified CP 1 is connecting vectors as follows:

1. Convert all coordinates to cylindrical coordinates.

2. Group vectors by the ztail into layers.

3. Randomly pick a vector from the lowest layer (smallest ztail).

4. Connect all vectors in the same layer according to their azimuth angles (θ) from the

smallest to the largest.

5. Go to the next layer and repeat last step until all layers are discovered.

6. Close the knot by connecting the head of last vector and the tail of first vector.

The simplified CP2 is as follows (complete algorithm is provided in the Appendix):

1. Convert all coordinates to cylindrical coordinates.

2. Group vectors by both zhead and ztail.

26

3.4. GENERATE CLOSED CURVES

Figure 3.7: CP2 connects the first 20 vectors from a 20,000 vectors sample

3. Randomly pick a vector from V .

4. Find the next vector whose tail has the same height as the previous vector’s head, and

closest θ. Then connect these two vectors.

5. Go to find the next vector until there is no vector’s tail having the height as current

vector’s head.

6. Close the knot by connecting the head of last vector and the tail of first vector.

The simplified CP3 is as follows (complete algorithm is provided in the Appendix):

1. Convert all coordinates to cylindrical coordinates.

2. Group vectors by the z-coordinate of both their heads and tails.

3. Randomly pick a vector from the bottom of the vector field (lowest layer with smallest

ztail).

4. Find the next vector using the criterion from Protocol 2, and also restricting the

distance between next vector’s tail vi+1,tail and current vector’s head vi,head with a

self-tuning tolerance tol such that ∥vi+1,tail − vi,head∥ ≤ tol.

27

CHAPTER 3. DATA AND METHODS

Figure 3.8: CP3 connects the first 20 vectors from a 20,000 vectors sample

5. If no vector’s tail having the same height as current vector’s head, go to the next layer

and find the next closest vector until reach the top of the vector field.

6. Close the knot by connecting the head of last vector and the tail of first vector.

Detailed Explanation

NOTE: All three protocol start with converting the coordinate system to cylindrical

coordinates. For the purpose of efficient grouping of vectors, dictionary (unordered_map

in C ++) is used as the data structure of storing vectors in the same layers (same z values).

Protocol 1

• In Step 4, if we start with a vector vi = (θi, ρi, zi), the next vector will be vi+1 =

(θi+1, ρi+1, zi+1) such that

θi+1 = min
θ>θi

θ

zi+1 = zi

If there are multiple θ having the same value, the vector with smaller ρ will be selected.

Based on the above conditions, a unique vector can be determined as the next vector

28

3.4. GENERATE CLOSED CURVES

to be connected or no such vector exists.

• In Step 5, the next layer will have

z = min
z>zi

z

And the first vector will have

θ0 = min θ

Same as before, if multiple vectors have the same θ, the one with smallest ρ will be

selected.

Protocol 2

• In Step 3, the rationale behind is that there exist jumping vectors, which have different

heights of heads and tails, in the vector field. Therefore, if fortunate enough, after

connecting all vectors in the same layer, the jumping vectors will force connection to

another layer.

• In Step 4, this protocol improves from Protocol 1 that when reach next layer zi+1,

current vector vi does not connect the vector with smallest θ in layer zi+1, but the one

of closest θ with θi

Protocol 3

• In Step 4, this protocol improves from Protocol 2 that it avoids the situation connecting

two vectors far apart even though they have close θ. In other words, it does not connect

two vectors where spherical coordinates are far from Euclidean.

• To determine which vectors would be counted as ”close”, there are two different ways

to choose the tolerance (Note: tolerance determines the range of radius of possible

next vectors).

29

CHAPTER 3. DATA AND METHODS

– Tolerance method 1 (Tm1): The first way is to use a larger tolerance for

vectors with radius greater than a threshold, and a smaller radius for the rest.

The reason behind this is that we assume in the model there is a disordered core

in the capsid, and an ordered structure at the capsid wall.

– Tolerance method 2 (Tm2): The second is to use different tolerance for every

vector based on their radius. The tolerance increases linearly with the radius of

each vector.

• In Step 5, this protocol ensures the most number of layers are connected. It is a similar

technique used in Step 5 in Protocol 1.

3.5 Compute Knot Type

In this section, we will briefly describe how to determine the knot type of the trajectories

generated by using the Alexander polynomial.

In the programs, we start with projecting the trajectory to a plane from random angles.

The next step is to store the information of intersection of segments in a matrix m and see

how many crossings there are in the projection. If two segments cross with each other, we

label the segment above with a +1 while the one below is labeled -1. Then we look for a

+1 in m which is right handed and number it as +1 in the new matrix M . And we travel

through m to obtain the dowker code of the knot and store the information in M .

With the dowker code available, we attempt to do the Reidemeister moves for the knot to

simplify the structure. If after the simplification there are fewer than or equal to 2 crossings,

we know that it is an unknot. If not, we compute the alexander polynomial as in Chapter

2 from the dowker code of the knot, and we replace the variable t with -1. When a knot is

knotted, we know the value of the alexander polynomial is not 1.

30

Chapter 4

Results

4.1 Microvectors can be generated around the macrovec-

tor with small error

We have successfully generated sets of microvectors for a macrovector, with different number

of microvectors shown in Figure 4.1 and different p values in Figure 4.2. In addition, different

initialization values to be put in the Newton step or CG step yield different results. Tables

containing different information are shown below. All tables list the size of microvectors, the

objective value of the minimization problem, the standard deviation of xyz−coordinates of

the microvectors, the p value and its related maximal angle between the microvectors and

the macrovector, and the initialized range of x0 for solving the minimization problem.

In Table 4.1, we change the number of microvectors generated from 25 to 100. The objec-

tive value which indicates the sum of Euclidean distance from microvectors to macrovectors

square is decreasing from sizes 50 to 100. The standard deviation is also decreasing. These

mean that as we increase the number of microvectors generated in the minimization, the

microvectors are pointing more to the same direction. The angles between microvectors

and the macrovector is set to be less than π/3. The initial x,y, z are uniformly distributed

random numbers with xyz-coordinates of the macrovector as the center, with range 0.01.

31

CHAPTER 4. RESULTS

In Table 4.2, we change the p values and their corresponding θ of the microvectors.

The entries are ordered in increasing p value and decreasing θ (microvectors are pointing

in a smaller angle deviated from the macrovector). Note the objective values and standard

deviations do not decrease with the angle. Instead, as we decrease the maximal angle allowed,

the microvectors generated are more variant and deviate more from the macrovectors.

Table 4.1: Different sizes of microvectors and the properties of solutions to the minimization
problem

Size Objective Value Standard Deviation [x y z] p θ Init
25 0.000020 [0.000585 0.000185 0.000649] 0.5 π/3 0.01
50 0.001191 [0.002833 0.000875 0.003918] 0.5 π/3 0.01
75 0.000853 [0.002361 0.000738 0.002311] 0.5 π/3 0.01
100 0.000007 [0.000176 0.000055 0.000174] 0.5 π/3 0.01

Table 4.2: Different maximal angles between the macrovector and the microvectors and the
properties of solutions to the minimization problem

p θ Size Objective Value Standard Deviation [x y z] Init
0.00 π/2 50 0.00000008 [0.00002384 0.00000751 0.00002810] 0.01
0.10 1.4706 50 0.00000883 [0.00025951 0.00008165 0.00031489] 0.01
0.30 1.2661 50 0.00021717 [0.00131604 0.00041966 0.00155609] 0.01
0.50 π/3 50 0.00064507 [0.00183404 0.00059065 0.00301664] 0.01
0.70 0.7954 50 0.00000018 [0.00003448 0.00001084 0.00004326] 0.01
0.90 0.4510 50 0.01962861 [0.01112294 0.01242454 0.01067291] 0.01

In Figure 4.1, the microvectors are generated with maximal angle π/3, and initialized

range of x0 for the minimization problem is 1.2. The objective values of (a) is 0.66275626;

(b) is 4.57874648; (c) is 6.80597051; (d) is 6.69932780.

In Figure 4.2 and Figure 4.3, all graphs are showing 50 microvectors around the macrovec-

tor. The initialized range of x0 for the minimization problem is 1.2. Still, the objective value

indicates the differences in orientations of the microvectors. In Figure 4.2, the maximal

angle allowed in (a) is θ = π/2, objective value = 0.00000238; (b) is θ = π/3, objective value

= 3.47251175; (c) is θ = 0.4510, objective value = 6.93049420. These figures again illus-

trate that the microvectors are more variant when we decrease the maximal angle θ allowed

32

4.1. MICROVECTORS CAN BE GENERATED AROUND THE
MACROVECTOR WITH SMALL ERROR

(a)

(b)

Figure 4.1

between the microvectors and the macrovector in the minimization problem.

In Table 4.3, we change the initialized range for x0 in the Newton step or conjugate

gradient step. It is obvious that the objective value decreases as the range decreases. This is

because if the starting point is close enough to the optimal solution, the objective value will

33

CHAPTER 4. RESULTS

(c)

(d)

Figure 4.1: The graphs show the positions and orientations of different number of microvec-
tors (blue, thinner) around the macrovector (black, thicker): (a) 25 microvectors; (b) 50
microvectors; (c) 75 microvectors; (d) 100 microvectors.

be closer to zero under the same number of iterations and tolerance limit. But this also raises

another problem. If we start with a range of 0.00001 as in the table, the standard deviation

of x,y, z is also too small to argue whether all microvectors are the same or distinct.

34

4.1. MICROVECTORS CAN BE GENERATED AROUND THE
MACROVECTOR WITH SMALL ERROR

(a)

(b) (c)

Figure 4.2: The graphs show the positions and orientations of three sets of microvectors with
different maximal angles allowed in the minimization problem. (a) θ = π/2; (b) θ = π/3;
(c) θ = 0.4510.

Table 4.3: Different initialized ranges of x0 in the minimization problem for generating
microvectors.

Init Size Objective Value Standard Deviation p θ
10.000000 50 57.5049852678 [0.51337117 0.67053608 0.38910776] 0.50 π/3
2.000000 50 15.7973021541 [0.36009198 0.15796036 0.39089375] 0.50 π/3
1.200000 50 2.2692157738 [0.08728974 0.11256847 0.14989586] 0.50 π/3
1.000000 50 1.6175858364 [0.10059184 0.11676156 0.08332003] 0.50 π/3
0.100000 50 0.0000110323 [0.00030505 0.00009589 0.00034347] 0.50 π/3
0.010000 50 0.0000035291 [0.00017616 0.00005529 0.00018710] 0.50 π/3
0.001000 50 0.0000001538 [0.00004326 0.00001361 0.00003182] 0.50 π/3
0.000100 50 0.0000000051 [0.00000618 0.00000193 0.00000348] 0.50 π/3
0.000010 50 0.0000000024 [0.00000006 0.00000009 0.00000003] 0.50 π/3

35

CHAPTER 4. RESULTS

(a)

(b)

Figure 4.3: (a) is the vertical view of Figure 4.2(b); (b) is the vertical view of Figure 4.2(c).

36

4.2. UNIFORM SAMPLING OF THE VECTOR FIELD IS OBTAINED

4.2 Uniform sampling of the vector field is obtained

From our sampling method mentioned previously, it is possible to obtain a subsample of

vectors distributed uniformly inside the vector field without losing generality. Then we can

see some successful subsample in Figure 4.5. From Figure 4.5a to 4.5e, we can see that sample

with less than 20,000 vectors is insufficient to represent the complete dsDNA filament inside

the bacteriophage capsid. Based on these figures, we should always consider sampling more

than 5000 vectors in order to get a more accurate model of dsDNA with liquid crystal.

Figure 4.4: Visualizations of the original vector field

To compare these sampling results to our original vector field, visualizations of the original

vector field is presented in Figure 4.4.

37

CHAPTER 4. RESULTS

(a) Size: 100 (b) Size: 200

(c) Size: 500 (d) Size: 1,000

Figure 4.5: Different sample sizes visualization

38

4.2. UNIFORM SAMPLING OF THE VECTOR FIELD IS OBTAINED

(e) Size: 2,000 (f) Size: 5,000

(g) Size: 10,000 (h) Size: 20,000

Figure 4.5: Different sample sizes visualization (cont.)

39

CHAPTER 4. RESULTS

(i) Size: 50,000 (j) Size: 100,000

Figure 4.5: Different sample sizes visualization (cont.)

40

4.3. DIFFERENT TRAJECTORIES ARE OBTAINED FROM DIFFERENT
CONNECTING PROTOCOLS AND PARAMETERS

4.3 Different Trajectories Are Obtained From Different

Connecting Protocols And Parameters

For the three connecting protocols proposed in the previous chapter, it is not possible to

determine which one is the completely correct because the structure inside the bacteriophage

capsid is still unknown. In this section, the advantages and limitations of each connecting

protocol (CP) will be discussed.

CP1:

Advantages:

• Every vector in the vector field is connected, which means all layers are connected even

when there is only one vector per layer.

• It is easy to implement because this protocol does not need to care about how to jump

between layers.

Limitations:

• The jumping vectors do not change layers because the first task would be to connect

all vectors with same height of tail. In Figure 4.6a, the red vectors represent jumping

vectors. It is shown that these vectors need to go back to the layers of its tail even

when it is obviously pointing to a different layer (height). In other words, the jumping

vectors are not working in this protocol.

• Because when changing layers, the vector with smallest θ is always connected. It could

be the case that two vectors far apart will be connected even when there exists a closer

vector in terms of θ. Figure 4.6b shows how layers are changed when all vectors in the

same layer are connected. It also illustrates the problem discussed before that jumping

vectors are inactive for changing layers.

41

CHAPTER 4. RESULTS

(a) Connecting the first 200 vectors (b) Connecting the first 80 vectors

Figure 4.6: Connecting first 80 and 200 vectors with CP1

CP2:

Advantages:

• This protocol is a huge improvement from CP1 because it recognizes the heights of

heads and tails and is able to put them into different groups.

• Changing layers would only occur when connecting to the jumping vectors. Therefore,

it is possible that the first and last vectors are near, and it is the desired situation for

closing the knot.

• The closer vectors in term of θ in new layers in connected.

Limitations:

• The connection is highly dependent on the sampling results. If the sample consists

of a larger proportion of jumping vectors, more layers are visited. But if only a few

jumping vectors are available, the connection could end up early with only a small

number of vectors connected.

• The connection also relies on how well the first vector is randomly selected. If the first

vector is a jumping vector, the chance that vectors in the tail layer of jumping vector

42

4.3. DIFFERENT TRAJECTORIES ARE OBTAINED FROM DIFFERENT
CONNECTING PROTOCOLS AND PARAMETERS

being discovered is low. And due to the property that most jumping vectors are in the

center of the structure, the connection may not discover the vectors in the periphery,

and therefore the structure is incomplete.

• In Figure 4.7, it is shown that a large proportion of vectors in the periphery are not

connected (by gray lines). By this protocol, many vectors near the outer region are

not included in the trajectory.

• It is also possible that two close vectors in terms of θ are not close in space if their

Euclidean distances r to the z−axis varies hugely. This possibility leads to the situation

in Figure 4.8 if look at the center.

Figure 4.7: Connecting 5,000 vectors with CP2

CP3:

Advantages:

• This protocol incorporates the advantages from CP1 and CP2 that it can connect as

many layers in the structure as possible, and changes layers more reasonably because

43

CHAPTER 4. RESULTS

Figure 4.8: Connecting first 200 vectors in CP2

it can automatically select vectors near not only in term of θ but also r, which solves

the last limitation mentioned in CP2.

• We can control manually the tolerance for a more reasonable local connection, as shown

in Figure 4.9.

Limitations:

• Because the vectors always connect from the bottom to the top, it is impossible that

the first and last vectors are close in space.

• Restricting the distance from current vector to the next will also reduce the number

of points available to connect.

In Table 4.4 and Table 4.5, we present how different connecting protocols (CP) act on

different sizes of subsamples. Because CP1 has bad performance in connecting samples from

the vector field, we do not include the result of this protocol in this table. Here, the numbers

and percentages are the averages of 10 experiments of each protocols. Tolerance method 1

refers to using one tolerance value (next to CP3 in the first column) for the ordered region

and another value (1/5 of the ordered tolerance) for the disordered inner core (radius = 0.1).

In Tolerance method 2, we choose different tolerance for each vector according to its distance

to the z-axis. The tolerance increases linearly with the radius.

44

4.3. DIFFERENT TRAJECTORIES ARE OBTAINED FROM DIFFERENT
CONNECTING PROTOCOLS AND PARAMETERS

Figure 4.9: Visualization of the trajectory generated after connecting the first 200 vectors
using CP3, Tm 1, tol=0.005. However, it will be shown in Table 4.4 that such value of tol
is not reasonable. But this avoids the last limitation of CP2.

Comparing Table 4.4 and Table 4.5, we can see that more vectors are used in most cases

if we do not allow jumping between layers. This is due to the fact that if jumping vectors

are met early in a layer, jumping to another layer would omit the vectors left out in the

previous layer.

Based on Table 4.4 and Table 4.5, we can conclude the following:

• CP2 is more advantageous than CP3 for most sizes of samples if the primary goal is

to use as many vectors as possible.

• Tolerance method 2 uses more vectors than Tolerance method 1 with other parameters

being the same.

• The number of vectors used in the trajectory decreases as we decrease the tolerance

in CP3. This is because smaller regions are allowed when the algorithm looks for next

possible vector from current position.

• When the sample size goes over 10,000, the percentages of vectors use are less than 10%

with any protocol and tolerance, except for some cases in samples of 100,000 vectors.

However, Tolerance method 2 is not perfect. Because of the extremely small tolerances

45

CHAPTER 4. RESULTS

Table 4.4: Vector usage information with different sample sizes and protocols (Jumping
Layer Allowed)

Each column shows the average number and percentage of vectors used in different sample
sizes. The first row states the sizes of sample from the vector field. In the following rows,
CP2 means Connecting Protocol 2; CP3 means Connecting Protocol 3, and the value next
to it is the tolerance for vector with radius 0.5.

Sample size 100 200 500 1000 2000 5000 10000 20000 50000 100000 191489 (ALL)
Average Numbers of Vector Used in the Connecting Protocols

CP2 83.00 137.70 227.30 309.30 450.40 853.40 1014.10 1864.60 3670.70 15612.80 16580.00
Tolerance method 1

CP3 0.5 80.20 134.40 216.40 300.20 432.20 792.00 1272.40 1960.10 3141.90 8953.30 15629.00
CP3 0.2 73.90 111.20 176.10 263.60 388.60 802.90 1122.90 1716.80 3385.20 16386.80 8983.00
CP3 0.1 69.70 104.00 151.30 211.40 316.80 573.50 1121.10 1741.60 2788.20 6911.00 8162.00
CP3 0.05 68.90 100.10 145.30 188.50 273.90 511.80 788.20 1372.40 1962.50 6728.00 6481.00
CP3 0.01 70.20 97.20 139.00 183.90 234.50 476.90 706.30 1031.30 2031.80 2852.50 3456.00

Tolerance method 2
CP3 0.5 82.70 136.50 224.50 308.80 457.70 861.00 1289.30 1838.50 3933.50 12027.90 16439.00
CP3 0.2 76.00 128.80 210.40 289.20 431.80 768.70 1303.70 1166.80 3435.70 19466.40 12103.00
CP3 0.1 75.90 115.60 187.10 261.10 367.50 807.30 1162.00 1784.90 3362.60 13711.20 9484.00
CP3 0.05 71.70 107.20 164.00 227.10 300.40 648.20 1097.30 1848.70 2555.50 14408.00 8668.00
CP3 0.01 69.30 99.30 143.10 189.20 264.40 439.60 649.40 1340.70 1877.00 5604.00 5299.00

Percentages of Vector Used (%)
CP2 83.00 68.85 45.46 30.93 22.52 17.07 10.14 9.32 7.34 15.61 8.66

Tolerance method 1
CP3 0.5 80.20 67.20 43.28 30.02 21.61 15.84 12.72 9.80 6.28 8.95 8.16
CP3 0.2 73.90 55.60 35.22 26.36 19.43 16.06 11.23 8.58 6.77 16.39 4.69
CP3 0.1 69.70 52.00 30.26 21.14 15.84 11.47 11.21 8.71 5.58 6.91 4.26
CP3 0.05 68.90 50.05 29.06 18.85 13.70 10.24 7.88 6.86 3.92 6.73 3.38
CP3 0.01 70.20 48.60 27.80 18.39 11.72 9.54 7.06 5.16 4.06 2.85 1.80

Tolerance method 2
CP3 0.5 82.70 68.25 44.90 30.88 22.89 17.22 12.89 9.19 7.87 12.03 8.58
CP3 0.2 76.00 64.40 42.08 28.92 21.59 15.37 13.04 5.83 6.87 19.47 6.32
CP3 0.1 75.90 57.80 37.42 26.11 18.38 16.15 11.62 8.92 6.73 13.71 4.95
CP3 0.05 71.70 53.60 32.80 22.71 15.02 12.96 10.97 9.24 5.11 14.41 4.53
CP3 0.01 69.30 49.65 28.62 18.92 13.22 8.79 6.49 6.70 3.75 5.60 2.77

for vectors near the center axis and the fact that jumping vectors are cumulating around the

center axis, the connection could ignore some of them. Therefore, the curve is forced to go

to the next layer after connecting all vectors in the same layer, possibly without using (or

skipping) the jumping vectors in the same layer.

Based on the conclusion in the previous section that sample size should be greater than

5,000, we visualize some trajectories with 20,000, 50,000, and all vectors, in different CP’s

and Tm’s.

In the next few pages, the graphs illustrates how different CP’s and different Tolerance

46

4.3. DIFFERENT TRAJECTORIES ARE OBTAINED FROM DIFFERENT
CONNECTING PROTOCOLS AND PARAMETERS

Table 4.5: Vector usage information with different sample sizes and protocols (Jumping
Layer NOT Allowed)

Sample size 100.00 200.00 500.00 1000.00 2000.00 5000.00 10000.00 20000.00 50000.00 100000.00 191489 (ALL)
Average Numbers of Vector Used in the Connecting Protocols

CP2 99.10 196.00 478.50 930.20 1759.20 4012.40 7616.90 15822.20 33306.80 77695.30 133339.00
Tolerance method 1

CP3 0.5 94.20 180.20 438.10 806.80 1440.40 3302.10 6719.50 12346.10 28527.70 61310.60 128232.50
CP3 0.2 78.30 126.50 249.60 426.10 944.40 2520.00 4536.30 7111.50 18423.40 38560.20 110780.50
CP3 0.1 70.90 109.50 158.00 244.00 409.70 1038.90 2894.30 7446.60 14330.10 22376.20 61774.50
CP3 0.05 71.70 99.20 146.30 200.80 287.00 562.00 1013.20 1982.70 7973.60 14498.80 13984.50
CP3 0.01 68.80 98.40 140.30 182.50 260.90 472.30 699.00 1298.30 1845.80 2612.90 3455.50

Tolerance method 2
CP3 0.5 98.50 195.10 477.70 924.80 1717.10 4059.20 7819.50 14474.60 31414.40 73375.70 133482.50
CP3 0.2 90.40 172.50 400.50 812.60 1587.60 4074.70 7482.90 14934.30 33611.90 59871.00 130999.50
CP3 0.1 80.60 141.60 267.30 475.90 898.10 2791.00 6024.40 12550.70 31087.70 52144.50 123409.50
CP3 0.05 72.80 113.90 193.40 278.50 476.10 1077.40 2400.70 6160.20 23129.60 37155.80 101059.50
CP3 0.01 67.00 99.10 144.70 192.30 276.30 504.10 824.70 1477.90 2974.70 6792.80 16966.50

Percentages of Vector Used (%)
CP2 99.10 98.00 95.70 93.02 87.96 80.25 76.17 79.11 66.61 77.70 69.63

Tolerance method 1
CP3 0.5 94.20 90.10 87.62 80.68 72.02 66.04 67.19 61.73 57.06 61.31 66.97
CP3 0.2 78.30 63.25 49.92 42.61 47.22 50.40 45.36 35.56 36.85 38.56 57.85
CP3 0.1 70.90 54.75 31.60 24.40 20.48 20.78 28.94 37.23 28.66 22.38 32.26
CP3 0.05 71.70 49.60 29.26 20.08 14.35 11.24 10.13 9.91 15.95 14.50 7.30
CP3 0.01 68.80 49.20 28.06 18.25 13.05 9.45 6.99 6.49 3.69 2.61 1.80

Tolerance method 2
CP3 0.5 98.50 97.55 95.54 92.48 85.85 81.18 78.20 72.37 62.83 73.38 69.71
CP3 0.2 90.40 86.25 80.10 81.26 79.38 81.49 74.83 74.67 67.22 59.87 68.41
CP3 0.1 80.60 70.80 53.46 47.59 44.91 55.82 60.24 62.75 62.18 52.14 64.45
CP3 0.05 72.80 56.95 38.68 27.85 23.80 21.55 24.01 30.80 46.26 37.16 52.78
CP3 0.01 67.00 49.55 28.94 19.23 13.82 10.08 8.25 7.39 5.95 6.79 8.86

methods’ in CP3 affect the number of vectors used and therefore the smoothness of trajecto-

ries. All trajectories are connected using macrovectors from the original vector field instead

of microvectors. From Figure 4.10a to Figure 4.10f, we see that the structure of trajectories

does not form a sphere. It means the DNA does not fill the entire capsid, which disagrees

with our proposed model. Therefore, the figures imply that tolerance less than or equal to

0.2 should not be used in all sizes of samples because it is not coherent with the model.

Comparing the left column (Tm1) and right column (Tm2), more vectors are used in the

trajectories with Tolerance method 2. This also aligns the data and conclusion derived from

Table 4.4.

47

CHAPTER 4. RESULTS

(a) CP3: All vectors, Tm1,
Tol=0.01

(b) CP3: All vectors, Tm2,
Tol=0.01

(c) CP3: All vectors, Tm1,
Tol=0.05

(d) CP3: All vectors, Tm2,
Tol=0.05

(e) CP3: All vectors, Tm1,
Tol=0.20

(f) CP3: All vectors, Tm2,
Tol=0.20

48

4.3. DIFFERENT TRAJECTORIES ARE OBTAINED FROM DIFFERENT
CONNECTING PROTOCOLS AND PARAMETERS

(g) CP3: All vectors, Tm1,
Tol=0.50

(h) CP3: All vectors, Tm2,
Tol=0.50

(i) CP3: All vectors, Tm1,
Tol=1.00

(j) CP3: All vectors, Tm2,
Tol=1.00

(k) CP2: All vectors (l) CP2:50,000 vectors

49

CHAPTER 4. RESULTS

(m) CP3: 50,000 vectors, Tm1,
Tol=0.50

(n) CP3: 50,000 vectors, Tm2,
Tol=0.50

(o) CP3: 20,000 vectors, Tm1,
Tol=0.50

(p) CP3: 20,000 vectors, Tm2,
Tol=0.50

Figure 4.10: These graphs show the trajectories of DNA when using different protocols and
parameters.

50

4.4. THE TRAJECTORIES ARE UNKNOTTED

4.4 The Trajectories Are Unknotted

In this section, we will present the results of computing the knot type of the trajectories.

More importantly, we need to see if they are knotted or not. Due to the limit of computation

power of available devices, we tested the trajectories generated by different sample sizes from

50 to 500. They are all unknotted. Some projections are showed for specific sample sizes.

(a) Regular view of the trajectory (b) Successful projection for computing the
knot type

Figure 4.11: Different views of trajectory of connecting 150 vectors

(a) Regular view of the trajectory (b) Successful projection for computing the
knot type

Figure 4.12: Different views of trajectory of connecting 500 vectors

From Table 4.6, we see that trajectories generated from less than 500 macrovectors are

unknotted, which disagrees with our experimental data. From experiments, we see more than

51

CHAPTER 4. RESULTS

Table 4.6: Average number of crossings in projections for different trajectories

Number of vectors in the sample Number of points Average number of crossings Knotted or not
50 107 149

Unknotted

100 176 469
150 262 644
250 304 964
350 407 1476
400 430 1665
500 486 2007
1000 619 2889

Unknown5000 1722 16641
20000 4522 117658

All 35177 1560863

90% are knots, but here we do not see any. The reasons behind it are (1) the trajectories

are set to go up from the bottom to the top in all protocols; (2) the number of vectors in

the reconstruction is small; (3) the jumping vectors in the core are ignored. Therefore, the

trajectories always go up and changing between layers does not occur frequently.

52

Chapter 5

Conclusions and Future Work

The motivation of this thesis is to understand the knotting structures of trajectories gener-

ated by connecting the solutions to the PDEs.

Because the actual folding of DNA (trajectory) inside the viral capsid is unknown, even

when we obtain the energy fields, we are unable to determine how a complete trajectory can

be generated. We developed three different connecting protocols, which allow us to explore

different scenarios. In addition, we successfully generate microvectors around the macrovec-

tors with small error. This also enables us to obtain different trajectories by connecting

microvectors instead. Due to the limit of computational power, a sampling method is also

designed in order to do the computation of knotting in smaller sizes.

5.1 Limitation of the work

The main limitation of this work is that the trajectories we have generated are all connecting

from the bottom end to the top end such that the starting point and ending point are far

away. Because when DNA enters a capsid, it moves freely until all of it is inside the capsid,

it is possible that the head and tail of the DNA connect with each other. Therefore, it is

reasonable to formulate a connection protocol which the starting and ending points are close.

In addition, from Table 4.4, we can see that only a small portion of vectors are used in

53

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

the trajectories for most sample sizes and protocols when we decide to jump between layers.

This limitation can be caused by not enforcing the trajectory to connect from the peripheral

at each layer. And because most jumping vectors are located near the z-axis, or center of

the vector field, when the process is jumping, it is more likely to stay in the center and keep

jumping.

Another limitation is that there are still sharp changes of direction in the trajectories

generated with small sample sizes, which means the curves are not smooth. This could be

addressed by interpolating smooth curves between vectors.

Moreover, if we want the microvectors generated to be more variant (Figure 4.1), instead

of pointing to nearly the same direction (Figure 4.2(a)), our current method would also give

larger errors that the difference between the mean of microvectors and the macrovector is

larger. In other words, more variant microvectors are less accurate.

Finally, we have only analyze the knotting properties of trajectories with sample size up

to 500. The results are not accurate enough to make a conclusion on the complete trajectory

of DNA because of the small sample size.

5.2 Future work

There are many directions for future work. One direction is to develop another connecting

protocol such that starting at any random point in the vector field and ending up the

connection at a close point to the starting position. Also, we can consider improving the

sampling method according to the connecting protocols such that more vectors can be used

in generating the trajectories. With such improvement, we will be able to derive a more

complete and reliable trajectory using a smaller sample.

More trajectories can also be derived from using the microvectors in the connection.

But we need to balance between the variances and the accuracies of microvectors gener-

ated. Therefore, it is possible to obtain them in different ways instead of formulating an

54

5.2. FUTURE WORK

optimization problem.

Another way to analyze the knotting property can be done by speeding up the computa-

tion of knot type program. This allows us to understand the structures of more sophisticated

trajectories of larger sample or even the one obtained from original vector field without sam-

pling.

55

Chapter 6

Acknowledgements

I was lucky to have Javier Arsuaga as my advisor at UC Davis. It was him who gave the

opportunity of doing research work as an undergraduate student to me. I took Javier’s

MAT 128B and after that we decided the work to do in this thesis. I also thank him for

taking patience discussing problems with me every week and looking for resources on my

level whenever I see new concepts and algorithms.

Amongst students current and former, thanks to Zihao Zhu for introducing this project to

me and sharing ideas on writing the first few programs. Thanks also to Tamara M Christiani,

Anthony Jajeh, and Wangbo Tang for giving advice to my thesis and presentation.

Thanks to my parent Xunren and Liping for instilling the respect and love for education,

which made me so natural to continue in academia instead of going into industry right after

my graduation from UC Davis.

This research was partially supported by a grant from the NSF: DMS- 1817156.

56

Appendices

57

Appendix A

Data Files

Triangulation of the spherical volume:TET Tetrahedra are numbered from 1 to 1103760 and

each line in the file contains the vertex number corresponding to one tetrahedron.

Coordinates of the vertices:VTX Each row contains the coordinates for the vertices of a

tetrahedron. The row of the coordinates corresponds to each of the columns in file TET.

Vectors:N Contains the n vector field and is mapped to the coordinates in VTX by row

number. In other words the first vector in N is placed starting at the first point in VTX.

Disorder parameter:S It is mapped by row number as before and it contains the value of

the disorder parameter.

58

Figure A.1: Screenshot of data TET

Figure A.2: Screenshot of data VTX

59

APPENDIX A. DATA FILES

Figure A.3: Screenshot of data N

Figure A.4: Screenshot of data S

60

Appendix B

Algorithms

B.1 CP3

61

function mat = CP3_algo(size,Tm,tolerance,VTX,N,S)
% size is the number of vectors will be used to generate the trajectory,
% Tm is the Tolerance method
% tol is the value of tolerance
% VTX, N, and S are the solutions to the PDEs

re_position(VTX);
% position center of vector field in the origin

tails = VTX;
% VTX contains the tails (bases) of vectors

subsample = generate_subsample(tails, size, num_spheres);
% num_spheres is a parameter used in the sampling

vector_heads = build_heads(tails,N);
% obtain the positions of heads of vectors in the vector field

tail_dict = construct_dictionary(tails_z, tails);
head_dict = construct_dictionary(heads_z, heads);
% in these two dictionaries, the key is the z values of tails/heads,
% and the items related to the key are all tails/heads with this z.

key_tail = keys(tail_dict);
% this returns all keys - different z values

for all i in 1:length(key_tail) :
 heads_and_tails(i) = {tails.cylinder, heads.cylinder,
 tails.cartesian, heads.cartesian, states};
 sort(heads_and_tails(i), tails.cylinder.theta);
end
% state contains information if a vector (tail&head) is discovered or not.
% sort heads_and_tails by value of theta of tails

cyl_dict = construct_dictionary(key_tail,heads_and_tails);
% dictionary: key = tail.cartesian.z value = vectors

reach_top = false;
end_curLayer = false;

cur_vector = heads_and_tails(1,1); % first vector in first layer

while reach_top == false
 if end_curLayer == false
 append(mat,cur_vector.tail.cartesian);
 append(mat,cur_vector.head.cartesian);
 % add current vector to output matrix

 cur_vector.state = true;
 % mark current vector as discovered

 layer = cyl_dict(cur_vector.tails.cartesian.z);
 % obtain the layer of current vector

 layer(find(cur_vector)) = cur_vector;
 cyl_dict(cur_vector.tails.cartesian.z) = layer;
 % update states in cyl_dict

 cur_z = cur_vector.head.cartesian.z;
 % find next vector using current head's height
 end

 if isKey(cyl_dict, cur_z) && end_curLayer == false
 key = cur_z;
 else
 key = find(min(key_tail>cur_z));
 end
 % look for next layer

 layer = cyl_dict(key);
 cur_head_dist_to_z_axis = sqrt(cur_vector.head.cartesian.x^2+
 cur_vector.head.cartesian.y^2);
 next_tails_dists_to_z_axis = sqrt(layer.tails.cartesian.x.^2+
 layer.tails.cartesian.^2);
 % compute the distances for tolerance restriction

 if Tm == 1
 if cur_head_dist_to_z_axis <= 0.1
 % radius of disordered inner core
 tol = tolerance/5;
 else
 tol = tolerance;
 end
 elseif Tm == 2
 tol = tolerance/(cur_head_dist_to_z_axis/0.5);
 % radius of the capsid is 0.5
 else
 report_error('invalid Tm type');
 end

 next_vectors = find(
 layer.tails.cylinder.theta > cur_vector.head.cylinder.theta &&
 layer.states == false &&
 next_tails_dists_to_z_axis < cur_head_dist_to_z_axis + tol &&
 next_tails_dists_to_z_axis > cur_head_dist_to_z_axis - tol);
 % find next tails

 if isempty(next_vectors) == false
 % there are multiple possible tails
 cur_vector = find(min(next_vectors.tail.cylinder.theta));
 elseif layer(1).state == false
 % current vector has largest theta, look for the smallest one
 cur_vector = layer(1);
 else
 % all vectors are discovered in this layer
 end_curLayer = true;
 end
end

APPENDIX B. ALGORITHMS

B.2 CP2

64

References

[1] Colin C Adams. The knot book. American Mathematical Soc., 1994.

[2] Javier Arsuaga and Y Diao. “DNA knotting in spooling like conformations in bacte-

riophages”. In: Computational and Mathematical Methods in Medicine 9.3-4 (2008),

pp. 303–316.

[3] Uri M Ascher and Chen Greif. A first course on numerical methods. SIAM, 2011.

[4] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cam-

bridge university press, 2004.

[5] Richard H Crowell and Ralph Hartzler Fox. Introduction to knot theory. Vol. 57.

Springer Science & Business Media, 2012.

[6] Irshad Ul Haq et al. “Bacteriophages and their implications on future biotechnology:

a review”. In: Virology journal 9.1 (2012), pp. 1–8.

[7] E Kellenberger et al. “Considerations on the condensation and the degree of compact-

ness in non-eukaryotic DNA-containing plasmas”. In: Bacterial chromatin. Springer,

1986, pp. 11–25.

[8] Amelie Leforestier and Francoise Livolant. “The bacteriophage genome undergoes a

succession of intracapsid phase transitions upon DNA ejection”. In: Journal of molec-

ular biology 396.2 (2010), pp. 384–395.

[9] WB Raymond Lickorish. An introduction to knot theory. Vol. 175. Springer Science &

Business Media, 2012.

65

REFERENCES

[10] Françoise Livolant. “Ordered phases of DNA in vivo and in vitro”. In: Physica A:

Statistical Mechanics and its Applications 176.1 (1991), pp. 117–137.

[11] Davide Marenduzzo et al. “DNA–DNA interactions in bacteriophage capsids are re-

sponsible for the observed DNA knotting”. In: Proceedings of the National Academy of

Sciences 106.52 (2009), pp. 22269–22274.

[12] Igor Muševič. “Nematic liquid-crystal colloids”. In: Materials 11.1 (2018), p. 24.

[13] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Busi-

ness Media, 2006.

[14] Udom Sae-Ueng et al. “Solid-to-fluid DNA transition inside HSV-1 capsid close to the

temperature of infection”. In: Nature chemical biology 10.10 (2014), p. 861.

[15] Alexander Sulakvelidze, Zemphira Alavidze, and J Glenn Morris. “Bacteriophage ther-

apy”. In: Antimicrobial agents and chemotherapy 45.3 (2001), pp. 649–659.

[16] Inc. The MathWorks. MATLAB Optimization Toolbox. Natick, Massachusetts, United

State, 2020. url: https://www.mathworks.com/help/optim/.

[17] Shelly Tzlil et al. “Forces and pressures in DNA packaging and release from viral

capsids”. In: Biophysical journal 84.3 (2003), pp. 1616–1627.

[18] Shawn Walker et al. “Liquid crystal model of viral DNA encapsidation”. In: Phys. Rev.

E 101 (2020), p. 022703.

[19] Walker, Shawn and Arsuaga, Javier and Hiltner, Lindsey and Calderer, M Carme and

Vázquez, Mariel. “Fine structure of viral dsDNA encapsidation”. In: Physical Review

E 101.2 (2020), p. 022703.

66

